Dobrý den,
jdu se jen ujistit, zda to chápu dobře. Chápu, že pro 1 x nesmí existovat
více než 1 y. Ale pro 1 y smí existovat více než 1 x, že ano? :)
Děkuji
ohodnoťte nejlepší odpověď symbolem palce
Zajímavá 1Pro koho je otázka zajímavá? Beer4Real před 3721 dny |
Sledovat
Nahlásit
|
Ahoj, nechápeš :)
Pro jedno X nesmí existovat více než jedno Y je podmínka pro to aby to byla vůbec funkce.
Pro jedno Y nesmí existovat více než jedno X aby to byla prostá funkce.
Takže například y=x2 není prosta funkce ,protože třeba pro y=4 existují 2 X, x=+2 a x=-2
0 Nominace Nahlásit |
Ne.
Udělala sis trochu matoucí zápis (je úplně jedno, kterou ´souřadnici´
bereš v úvahu jako ´vstupní´ do funkce… Nemysli na souřadnice, ale
vstupní proměnnou chápej jen jako proměnnou.
😉
Zkusím to – jestliže x1 ≠ x2 , pak musí platit f(x1) ≠ f(x2).
Nabo jinak – pro každé x musí existovat jednoznačné f(x).
A samozřejmě to musí platit i opačně – pro každé f(x) musí
existovat jednoznačné x.
___
Pokud bych si f(x) definoval jako y, tedy y = f(x), pak i pro každé y (aby
funkce byla prostá), musí platit, že pokud y1 ≠ y2 , pak musí platit f(y1)
≠ f(y2).
___
Jo?
😉
0 Nominace Nahlásit |
U otázky nebylo diskutováno.
Nový příspěvekannas | 5283 | |
Kepler | 2867 | |
Drap | 2651 | |
quentos | 1803 | |
mosoj | 1594 | |
marci1 | 1357 | |
led | 1356 | |
aliendrone | 1181 | |
zjentek | 1080 | |
Kelt | 1015 |
Astronomie |
Fyzika |
Jazyky |
Matematika |
Sociální vědy |
Technické vědy |
Ostatní věda |