Odpověděl/a – 12.srpen 23:01
Házení jednou kostkou se řídí binomickým rozdělením. Má n stejných nezávislých pokusů, u kterých sledujeme jev A (padne šestka) s pravděpodobností p = (1/6) a nenastane, tj. nastane jev opačný A’ – nepadne šestka) s pravděpodobností q = (1 – p) = (5/6). Sledujme kolikrát v n pokusech jev A nastal.
Už víme, že pravděpodobnost jevu A v opakovaných hodech má binomické rozdělení ~ B(n,1/6), kde p(x) = (nx)(1/6)x(5/6)n-x. Proto stačí dosadit již jen hodnotu za parametr n a hledané pravděpodobnosti vyčíslit.
Jaká je pravděpodobnost, že padne aspoň jedna 6 při hodu šesti kostkami? Tj. Jaká je pravděpodobnost, že při šesti hodech jednou kostkou padne aspoň jednou 6? Sledodvaný pokus se řídí binomickým rozdělením B(6,1/6). Ještě si uvědomme, že slovíčko „aspoň“ napovídá, že je rozumné přejít k opačnému jevu: místo „aspoň jednou padne šestka“ použít „ani jednou šestka nepadne“, které odečteme od 1.
P(aspoň jedna 6 při hodu 6 kostkami) = 1 – p(0) = 1 –
(60)(1/6)0(5/6)6 = 0,6651
Analogicky vypočítáme:
Jaká je pravděpodobnost, že padnou aspoň dvě 6 při hodu dvanácti
kostkami? Tj. Jaká je pravděpodobnost, že při dvanácti hodech jednou
kostkou padnou aspoň dvě 6? Sledodvaný pokus se řídí binomickým
rozdělením B(12,1/6). Opět místo „aspoň dvě šestky“ přejdeme na
„buď žádná nebo jedna šestka“
P(aspoň dvě 6 při hodu 12 kostkami) = 1 – p(0) – p(1) = = 1 – (120)(1/6)0(5/6)12 – (121)(1/6)1(5/6)11 = 0,6187
Odpověď na začátku položenou otázku zní: Je pravděpodobnější, že padne aspoň jedna 6 při hodu šesti kostkami, než že padnou aspoň dvě 6 při hodu 12 kostkami :)
Odpověděl/a – 12.srpen 23:04
Házení jednou kostkou se řídí binomickým rozdělením. Má n stejných nezávislých pokusů, u kterých sledujeme jev A (padne šestka) s pravděpodobností p = (1/6) a nenastane, tj. nastane jev opačný A’ – nepadne šestka) s pravděpodobností q = (1 – p) = (5/6). Sledujme kolikrát v n pokusech jev A nastal.
Už víme, že pravděpodobnost jevu A v opakovaných hodech má binomické rozdělení ~ B(n,1/6), kde p(x) = (nx)(1/6)x(5/6)n-x. Proto stačí dosadit již jen hodnotu za parametr n a hledané pravděpodobnosti vyčíslit.
Jaká je pravděpodobnost, že padne aspoň jedna 6 při hodu šesti kostkami? Tj. Jaká je pravděpodobnost, že při šesti hodech jednou kostkou padne aspoň jednou 6? Sledodvaný pokus se řídí binomickým rozdělením B(6,1/6). Ještě si uvědomme, že slovíčko „aspoň“ napovídá, že je rozumné přejít k opačnému jevu: místo „aspoň jednou padne šestka“ použít „ani jednou šestka nepadne“, které odečteme od 1.
P(aspoň jedna 6 při hodu 6 kostkami) = 1 – p(0) = 1 – (60)(1/6)0(5/6)6 = 0,6651
Analogicky vypočítáme:
Jaká je pravděpodobnost, že padnou aspoň dvě 6 při hodu dvanácti
kostkami? Tj. Jaká je pravděpodobnost, že při dvanácti hodech jednou
kostkou padnou aspoň dvě 6? Sledodvaný pokus se řídí binomickým
rozdělením B(12,1/6). Opět místo „aspoň dvě šestky“ přejdeme na
„buď žádná nebo jedna šestka“
P(aspoň dvě 6 při hodu 12 kostkami) = 1 – p(0) – p(1) = = 1 – (120)(1/6)0(5/6)12 – (121)(1/6)1(5/6)11 = 0,6187
Odpověď na začátku položenou otázku zní: Je pravděpodobnější, že padne aspoň jedna 6 při hodu šesti kostkami, než že padnou aspoň dvě 6 při hodu 12 kostkami :)